Abstract

In order to evaluate the feasibility of 9SiCr alloy tool steel produced by thin slab casting, the high temperature mechanical properties of 9SiCr alloy tool steel were investigated by Gleeb-1500 thermal simulator. The morphologies of the tensile fracture at different temperatures were observed by scanning electron microscope (SEM), together with analysis of fracture mechanisms in different regions. The results showed that there were two brittle zones in the temperature range from 600 °C to 1200 °C. A melting fracture was characterized in the high temperature brittle zone of above 1170 °C, whereas a typical cleavage fracture was exhibited in the low temperature brittle zone from 820 °C to 600 °C, Meanwhile, a good hot ductility behavior characterized by typical dimple fracture was demonstrate at the temperature range from 1170 °C to 820 °C.Thus, the 9SiCr alloy tool steel with the final gauge of 1.5mm was produced by CSP, based on the optimal process parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.