Abstract
We present a direct fiber output of single photons from self-assembled quantum dots (QDs) realized by a stable fiber array-QD chip coupling. The integration of distributed Bragg reflector cavity and the etching of micropillar arrays isolate QDs and enhance their normal emission. The matched periods and mismatched diameters of the pillar array and the single-mode fiber array with Gaussian-shaped light spots enable a large alignment tolerance and a stable, efficient (i.e., near-field), and chip-effective (i.e., parallel) coupling of single QD emission, as compared to the traditional “point-based” coupling via a confocal microscope, waveguide, or fiber. The single photon counting rate at the fiber end reaches 1.87 M counts per second (cps) with a time correlation g2(0) of 0.3 under a saturated excitation, and 485 K cps with a g2(0) of 0.02 under a weak excitation, demonstrating a nice “all-fiber” single-photon source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.