Abstract

Silicon carbide (SiC) is among the most promising optical materials for the realization of classical and quantum photonics, due to the simultaneous presence of quantum emitters and a non-centrosymmetric crystal structure. In recent years, progress have been made in the development of SiC integrated optical components making this a mature platform for the implementation of quantum experiments on chip. Toward this scope, the fabrication of a single photon detector that can be implemented on top of a photonic circuit is essential to achieve a monolithic integration of all the fundamental building blocks required for photonic quantum technologies. Here we demonstrate for the first time single photon detection with superconducting nanowires on top of a bare 3C SiC layer using a novel approach for the fiber-to-detector coupling that allows the optical characterization of multiple detectors without the use of neither cryogenic positioners nor the micromachining of the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.