Abstract

Dark matter is five times more abundant than ordinary visible matter in our Universe. While laboratory searches hunting for dark matter have traditionally focused on the electroweak scale, theories of low mass hidden sectors motivate new detection techniques. Extending these searches to lower mass ranges, well below 1 GeV/c2, poses new challenges as rare interactions with standard model matter transfer progressively less energy to electrons and nuclei in detectors. Here, we propose an approach based on phonon-assisted quantum evaporation combined with quantum sensors for detection of desorption events via tracking of spin coherence. The intent of our proposed dark matter sensors is to extend the parameter space to energy transfers in rare interactions to as low as a few meV for detection of dark matter particles in the keV/c2 mass range. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.