Abstract

Experiments have been conducted to investigate the single-phase pressure drop and heat transfer characteristics of liquid nitrogen in four micro-tubes with the diameters of 1.931, 1.042, 0.834 and 0.531 mm. The friction factors are compared with the conventional correlations over a Reynolds number range of 10,000–90,000. The effect of the variable thermal properties of liquid nitrogen, i.e., viscosity and thermal conductivity, on the flow and local heat transfer in the micro-tubes is clarified. The average Nusselt numbers are determined and compared with the correlations for the conventional channels and micro-channels, respectively. It is found that large roughness of the micro-tube causes high friction factor, and the modified Colebrook correlation can well predict the experimental friction factors by using the measured surface roughness. With the increase of liquid nitrogen temperature, the pressure drop decreases as a result of the lower viscosity. Opposite to water, the local heat transfer coefficient of liquid nitrogen flow in the micro-tube drops by 12.5% along the tube. The experimental data show that the average Nusselt numbers for the micro-tubes are higher than those predicted by the correlations for the conventional channels. Taking into account the effect of surface roughness of the micro-tubes on the heat transfer, the modified Gnielinski correlation enables to predict the experimental Nusselt numbers with a mean absolute error (MAE) of 6.4%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.