Abstract

Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been published in the past decades. The performance of liquid flow has been proved that agrees with the conventional correlations very well. However, owing to the low heat transfer coefficient of gaseous flow, it is more difficult to eliminate the effects of thermal shunt and heat loss than water flow while measuring its heat transfer performance. None of the heat transfer performance experimental results have been published in the literature. This study provides an experimental investigation on the pressure drop and heat transfer performance of air flow through microtubes with inside diameter of 86, 308 and 920 μm. The Liquid Crystal Thermography method was used to measure the tube surface temperature for avoiding the thermocouple wire thermal shunt effect. The experimental results show that the frictional coefficient of gas flow in microtube is the same as that in the conventional larger tubes if the effect of gaseous flow compressibility was well taken consideration. The conventional heat transfer correlation for laminar and turbulent flow can be well applied for predicting the fully developed gaseous flow heat transfer performance in microtubes. There is no significant size effect for air flow in tubes within this diameter range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.