Abstract

Due to the complexity of heterogeneous reactions and heterogeneities of individual catalyst particles in size, morphology, and the surrounding medium, it is very important to characterize the structure of nanocatalysts and measure the reaction process of nanocatalysis at the single-particle level. Traditional ensemble measurements, however, only provide averaged results of billions of nanoparticles (NPs), which do not help reveal structure–activity relationships and may overlook a few NPs with high activity. The advent of dark-field microscopy (DFM) combined with plasmonic resonance Rayleigh scattering (PRRS) spectroscopy provides a powerful means for directly recording the localized surface plasmon resonance (LSPR) spectrum of single plasmonic nanoparticles (PNPs), which also enables quantitative measurements. In recent years, DFM has developed rapidly for a series of single-particle catalytic reactions such as redox reactions, electrocatalytic reactions, and DNAzyme catalysis, with the ability to monitor the catalytic reaction process in real time and reveal the catalytic mechanism. This review provides a comprehensive overview of the fundamental principles and practical applications of DFM in measuring various kinds of catalysis (including chemocatalysis, electrocatalysis, photocatalysis, and biocatalysis) at the single-particle level. Perspectives on the remaining challenges and future trends in this field are also proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call