Abstract

Questions surrounding the optical properties of two-dimensional (2D) triangular single gold nanoplates (AuNPs) remain largely unanswered. Herein, a scanning-electron microscopy-correlated single-particle study was conducted to identify polarization-dependent optical properties of AuNPs under dark-field (DF) and differential interference contrast (DIC) microscopy. AuNPs with an aspect ratio of ∼3 showed a single broad DF scattering spectrum without separation of the two dipole and quadrupole resonance modes present in 2D AuNPs. Polarization-sensitive interference properties of the individual AuNPs were revealed through periodic changes in the intensities and types of DIC images obtained. A dipole resonance mode was found to mainly contribute to the polarization-sensitive interference properties of AuNPs. Furthermore, DIC polarization anisotropy allowed us to track the real-time orientation of a dipole resonance mode of a AuNP rotating on a live cell membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call