Abstract

Ammonia nitrogen (AN) pollution frequently occurs in urban rivers with the continuous acceleration of industrialization. Monitoring AN pollution levels and tracing its complex sources often require large-scale testing, which are time-consuming and costly. Due to the lack of reliable data samples, there were few studies investigating the feasibility of water quality prediction of AN concentration with a high fluctuation and non-stationary change through data-driven models. In this study, four deep-learning models based on neural network algorithms including artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU) were employed to predict AN concentration through some easily monitored indicators such as pH, dissolved oxygen, and conductivity, in a real AN-polluted river. The results showed that the GRU model achieved optimal prediction performance with a mean absolute error (MAE) of 0.349 and coefficient of determination (R2) of 0.792. Furthermore, it was found that data preprocessing by the VMD technique improved the prediction accuracy of the GRU model, resulting in an R2 value of 0.822. The prediction model effectively detected and warned against abnormal AN pollution (> 2mg/L), with a Recall rate of 93.6% and Precision rate of 72.4%. This data-driven method enables reliable monitoring of AN concentration with high-frequency fluctuations and has potential applications for urban river pollution management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.