Abstract

Previous studies have shown that daily, moderate-level sound exposure, or conditioning, can reduce injury from a subsequent high-level noise exposure. We tested the hypothesis that this conditioning produces an increased activity in the olivocochlear efferent reflex, a reflex known to provide protection to the cochlea. Guinea pigs were conditioned by a 10-day intermittent exposure to 2-4 kHz noise at 85 dB sound pressure level. This conditioning is known to reduce damage from a subsequent high-level exposure to the same noise band. Responses to monaural and binaural sound were recorded from single medial olivocochlear (MOC) efferent neurons, and data from conditioned animals were compared with those obtained from unexposed controls. MOC neurons were classified by their response to noise bursts in the ipsilateral or contralateral ears as ipsi units, contra units, or either-ear units. There were no significant differences in the distributions of these unit types between control and conditioned animals. There were also no differences in other responses to monaural stimuli, including the distribution of characteristic frequencies (CFs), the sharpness of tuning, or thresholds at the CF. For binaural sound at high levels, particularly relevant to sound-evoked activation of the MOC reflex during acoustic overstimulation, the firing rates of MOC neurons with CFs just above the conditioning band showed slight (but statistically significant) elevations relative to control animals. Frequency regions just above the conditioning band also demonstrated maximum conditioning-related protection; thus protection could be due, in part, to long-term changes in MOC discharge rates. For binaural sound at low levels, MOC firing rates in conditioned animals also were increased significantly relative to controls. Again, increases were largest for neurons with CFs just above the conditioning band. For equivalent monaural sound, rates were not significantly increased; thus, conditioning appears to increase binaural facilitation by opposite-ear sound. These data indicate that MOC neurons show long-term plasticity in acoustic responsiveness that is dependent on their acoustic history.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.