Abstract

Intramuscular adipogenesis plays an important role in muscle development, which determines the quality of goat meat. However, its underlying cellular and molecular mechanisms remain poorly understood. In this study, we provided detailed cellular atlases of goat longissimus dorsi during muscle development at single-nucleus resolution, and identified the subpopulations of fibroblasts/fibro-adipogenic progenitors (FAPs) and muscle satellite cell (MuSC), as well as the differentiation trajectory of FAPs subpopulations. Cellular ligand-receptor interaction analysis revealed enriched BMP and IGF pathways implicated in within-tissue crosstalk centered around FAPs. Through single-nucleus gene regulatory network analysis and in vitro interference verification, we found that TCF7L2 was a critical transcriptional factor (TF) in early adipogenesis in skeletal muscle. Overall, our work reveals the cellular intricacies and diversity of goat longissimus dorsi during muscle development, implementing insights into the critical roles of BMP, IGF pathways and TCF7L2 TF in intramuscular adipogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.