Abstract

Single-nucleon knockout cross sections from fast secondary beams of the proton-drip-line nuclei $^{9}\mathrm{C}$, $^{13}\mathrm{O}$, and $^{17}\mathrm{Ne}$ on a $^{9}\mathrm{Be}$ target have been studied with emphasis on the production of resonance states. These states were identified by their invariant mass, and resonances with two-, three-, and five-body exit channels were examined. The measured cross sections for these states were compared with eikonal-model predictions using shell-model or variational Monte Carlo spectroscopic factors. The experimental yields were found to be suppressed relative to the model predictions, especially when a well-bound neutron or proton is removed. This suppression exceeds that found systematically in measured inclusive cross sections to particle-bound final states. In neutron knockout from $^{9}\mathrm{C}$ and $^{13}\mathrm{O}$ projectiles, this suppression of the unbound ground-state residuals yield is a factor of two to three times larger than that found in the bound final-state studies. Modifications to the structure of these systems due to coupling of the shell-model configurations to the continuum is expected to contribute to this extra suppression, especially when the final state is a near-threshold resonance. However, other considerations including the role of nuclear dynamics may be required to explain all the observed trends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.