Abstract
This paper presents a study of electrokinetic transport in single nanopores integrated into vertically stacked three-dimensional hybrid microfluidicnanofluidic structures. In these devices, single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e., DNA) polyelectrolytes across these nanopores using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electro-osmotic transport is predominant over electrophoresis in single nanopores with d>180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.