Abstract

We present scanning tunneling microscopy (STM)-based single-molecule synthesis of linear metal-ligand complexes starting from individual metal atoms (iron or nickel) and organic molecules (9,10-dicyanoanthracene) deposited on an ultrathin insulating film. We directly visualize the frontier molecular orbitals by STM orbital imaging, from which, in conjunction with detailed density functional theory calculations, the electronic structure of the complexes is inferred. Our studies show how the order of the molecular orbitals and the spin-state of the complex can be engineered through the choice of the metal atom. The high-spin iron complex has a singly occupied delocalized orbital with a large spin-splitting that points to the use of these engineered complexes as modular building blocks in molecular spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.