Abstract

A single fluorescent molecule is highly likely to be located at the center pixel position of a raw image diffused spot in an ideal situation. Even if the molecule and the center pixel position do not completely overlap, they are very close. A single-molecule localization method based on denoising, interpolation and local maxima (DIL) is proposed. The low-resolution raw image is denoised and interpolated, and a new image with a pixel size equal to that of the super-resolution image is attained. The local maxima of the new image are extracted. With this method, it is found that the local maxima positions can be regarded as the fluorescent molecule positions. Simulation results demonstrate that the DIL single-molecule localization accuracy reaches ∼18 nm when the Gaussian noise variance is equal to 0.01. Experimental results demonstrate that the DIL localization methodology is comparable to the Gaussian fitting algorithm and is faster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call