Abstract

For super-resolution microscopy methods based on single molecule stochastic switching and localization, to simultaneously improve the spatial-temporal resolution, it is necessary to maximize the number of photons that can be collected from single molecules per unit time. Here, we describe a novel approach to enhance the signal intensity (collected photons per second) from fluorescence probes by introducing a stimulated emission (SE) optical process. This process is based on the following two properties: first, with reasonable parameters, the photon emission rate can be significantly increased with SE; and second, the SE photons, which are spatially coherent with the stimulation beam, are more favorable for collection than fluorescence. Theoretical results have shown that signal intensity from a single fluorescent molecule can be greatly improved with SE. We therefore showed, using SE in combination with single molecule localization methodology, that fast imaging at a rate of 0.05s per reconstructed image with lateral resolutions of ∼30 nm can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.