Abstract

Significant mechanical stability is an essential feature shared by many elastomeric proteins, which function as molecular springs in a wide variety of biological machinery and biomaterials of superb mechanical properties. Despite the progress in understanding molecular determinants of mechanical stability, it remains challenging to rationally enhance the mechanical stability of proteins. Using single molecule force spectroscopy and protein engineering techniques, we demonstrate that engineered bi-histidine metal chelation can enhance the mechanical stability of proteins significantly and reversibly. Based on simple thermodynamic cycle analysis, we engineered a bi-histidine metal chelation site into various locations of the small protein, GB1, to achieve preferential stabilization of the native state over the mechanical unfolding transition state of GB1 through the binding of metal ions. Our results demonstrate that the metal chelation can enhance the mechanical stability of GB1 by as much as 100 pN. Since bi-histidine metal chelation sites can be easily implemented, engineered metal chelation provides a general methodology to enhance the mechanical stability of a wide variety of proteins. This general approach in protein mechanics will enable the rational tuning of the mechanical stability of proteins. It will not only open new avenues toward engineering proteins of tailored nanomechanical properties, but also provide new approaches to systematically map the mechanical unfolding pathway of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.