Abstract

Electrochemical analysis of single molecules is a method with the strong ability of the enhanced efficiency and ultra-sensitivity. Here, we demonstrate that the electrochemical confined space could efficiently convert single molecule characteristics into measurable electrochemical signatures with high temporal resolution. The human telomere repeat sequence T8 was used as a probe to determine the electrochemical confined effect in a nanopore. Our results show that the nanopore with comparable confined space of the telomere repeat sequence exhibits the most distinguishable single-molecule signals which suggest the folded conformation of T8. This method will greatly extend the lifetime of a metastable conformation for a single biomolecule by strong analyte-nanopore interactions, which brings the new insight into the understanding of the biomolecule’s function at single-molecule level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.