Abstract
In this paper, the self-phase modulation (SPM) effect in a double-cladding single-mode tellurite optical fiber (DC-SMTOF) was exploited for temperature sensing. The DC-SMTOF was fabricated based on a TeO2-ZnO-Li2O-Bi2O3 (TZLB) glass material that has a thermo-optical coefficient as high as -16.4×10-6/°C. The temperature sensing performance was evaluated by detecting the 3-dB bandwidth of the SPM spectra with the variation of temperature at different pump wavelength and different average pump power. The temperature sensitivity was obtained to be -2.971 nm/°C with a resolution of 0.0168°C. Both simulation and experiment confirmed that a longer pump wavelength and higher average pump power will result in a higher temperature sensitivity. To the best of our knowledge, this is the first study concerning SPM-based temperature sensing in a tellurite optical fiber. The proposed temperature sensor has a compact structure, and it can realize temperature sensing of high sensitivity without any fiber modification. This work opens the road toward explorations of a novel temperature sensing technology combined with soft glass fibers and nonlinear phenomenon, and is expected to deepen our understanding in the application of these complex nonlinear phenomena.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have