Abstract

Soft robots mimic the agility of living organisms without rigid joints and muscles. Continuum bending (CB) is one type of motion living organisms can display. CB can be achieved using pneumatic, electroactive, or thermal actuators prepared by casting an active layer on a passive layer. The corresponding input actuates only the active layer in the assembly resulting in the bending of the structure. These two different layers must be laminated well during manufacturing. However, the formed bilayer can still delaminate later, and the detachment hampers the actuator's reversible, long-time use. An approach to creating a single material bending actuator was previously reported, for which spatial gradient swelling was used. This authentic approach allows a single material to be manufactured as a bending actuator, allowing easy access to such actuators without lamination. In this study, we show spatial porosity differences in the sponges of polydimethylsiloxane (PDMS) (a common material in soft robotics) can be used to create the required anisotropy for bending. The spongy polymers are manufactured through table sugar templates and actuated by (organic) solvent absorption/desorption. This enables some versatility in the mechanical properties, shape, actuation force, and actuation speed. The one-material system's straightforward production and seamless nature are advantageous for reversible and repetitive bending. This simple method can further be developed in hydrogels and polymers for soft robotics and functional materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call