Abstract

In traditional scheduling problems, most literature assumes that the processing time of a job is fixed. However, there are many situations where the processing time of a job depends on the starting time or the position of the job in a sequence. In such situations, the actual processing time of a job may be less than its normal processing time if it is scheduled later. This phenomenon is known as the ''learning effect''. In this study, we introduce general learning functions into a single-machine scheduling problems. We consider the following objective functions: (i) sum of weighted completion times, (ii) maximum lateness (iii) number of tardy jobs (iv) number of weighted tardy jobs. Non-linear programming models are developed for solving these problems.

Highlights

  • In this study, we introduce general learning functions into a single-machine scheduling problems

  • [33] GAMS 22.5, Development Corporation, GAMS– the solver manuals, GAMS user notes, Washington, DC, USA, 2007

Read more

Summary

Problemlerin Tanımlanması

Ele alınan problemlerdeki notasyonlar Koulamas ve Kyparisis, [31] ve Wang, [32]’ın çalışmalarından alınmıştır. Pj wj ve dj sırasıyla j işinin işlem zamanını, ağırlığını ve teslim tarihini vermektedir. Pozisyona atanan işin sırasıyla işlem zamanını, işin ağırlığını ve teslim tarihini ifade etmektedir. Pozisyona atanırsa işin işlem zamanı şu şekilde tanımlanmaktadır: pjr = pj (1 − ∑∑ri=ni−=111pp[ii])a = pj (∑∑nini==r1pp[ii])a a ≥ 1 öğrenme indeksidir. Pozisyona atanan işinin gecikmesini ve işin gecikme olup olmamasını vermektedir: Lr = Cr − d[r] ve. Geciken işlerin sayısı nT = ∑nr=1 Ur ile, geciken işlerin ağırlıklı sayıları ise nwT = ∑nr=1 wrUr ile ifade edilmektedir.

Tek makinede öğrenme etkili geciken ağırlıklı iş sayısı problemi
Sayısal Örnek
Sonuçlar ve Öneriler

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.