Abstract
We study a single machine scheduling problem, where the goal is to maximize the weighted number of jobs completed exactly at their due-dates. The option of job-rejection is considered, i.e., the scheduler may perform only a subset of the jobs. An upper bound on the total permitted rejection cost is assumed. The problem is proved to be NP-hard, and a pseudo-polynomial dynamic programming algorithm is introduced. Our numerical tests indicate that the proposed algorithm performs well: medium size instances (of up to 100 jobs) are solved in less than 1 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.