Abstract
<p style='text-indent:20px;'>This paper addresses single machine and flowshop machines with the learning phenomenon. The learning phenomenon means that the actual jobs processing time of a job is a non-increasing function of the sum of processing times of jobs already processed. Under single machine, some properties firstly are presented to solve the objectives of minimizing the makespan problem, the total (weighted) completion time problem, the maximum lateness problem and the total tardiness problem. We show that minimizing the makespan problem and the total completion time problem can be solved in polynomial time. For the weighted completion time problem, the maximum lateness problem and the total tardiness problem, we give heuristic algorithm based on the corresponding optimal schedule and analyze the worst case error bound. Furthermore, we also show that the three problems are polynomially solvable under certain conditions. Under flowshop machines, we finally show that the makespan problem and the total completion time problem under more specialized proportional job processing times can be solved in polynomial time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Industrial & Management Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.