Abstract
AbstractSingle‐layer carbon nitride (SLCN) is introduced as a metal‐free organic electron transport material (ETL) for organic solar cells, delivering a performance comparable to that of the benchmark nanocrystalline ZnO. SLCN is produced in the form of stable aqueous inks and can serve as an efficient electron transport layer for three different types of active layers, showing high stability to photodegradation. A lower conductivity of SLCN films as compared to ZnO is counter‐balanced by their higher transparency and lower light scattering losses. The SLCN ETL provides a unique opportunity to tune the work function from ca. −4.1 to −4.6 eV by varying the annealing temperature due to partial thermal oxidation of the SLCN film. The PL band position follows the oxidation‐induced changes of the work function allowing PL properties of SLCN to be used to predict the PV efficiency. The 2D structure of SLCN coupled with unique structural and compositional variability, and tunability of the work function show a high promise for emerging organic PV devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.