Abstract
A series of donor–acceptor diketopyrrolopyrrole derivatives has been investigated to reveal their optical, electronic, and charge transport properties for applications in organic light-emitting diodes (OLEDs) and organic solar cells (OSCs). The calculated results show that their optical, electronic, and charge transport properties are affected by the different end groups. The introduction of the 2,5-diphenylthiophene, benzo[c]isothiazole, benzo[c]thiophene, benzo[c]thiophene, 2,4-dihydrobenzo[d]thiazole, and thieno[3,4-b][1,4] dioxine end groups can broaden absorption spectrum and improve charge transport property of the designed compounds. Our results suggest that the designed compounds can serve as donor materials for OSCs and luminescent materials for OLEDs. In addition, the mobility of the designed compounds is also investigated. They are expected to be promising candidates for hole and electron transport materials. On the basis of investigated results, we proposed a rational way for the design of multifunctional materials for OLED and OSC applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.