Abstract

AbstractWithin the scope of the long term behaviour of the R7T7 glass, which is the French nuclear glass, leaching and its coupling with transport mechanisms is studied. Experiments carried out on a SON 68 glass (inactive R7T7 type glass) model cracks in static basic conditions show a strong coupling between solution transport and glass leaching, depending on crack aperture. Moreover, gravity driven convective transport was evidenced for vertical model cracks, whereas only molecular diffusion was detected for horizontal model cracks under the same alteration conditions. In addition, an original device was developed to study the influence of temperature gradients on alteration kinetics as a convective driving force. These experiments show conclusively that thermally- or gravity-induced convective flow must be taken into account, even if such convective effects have not been established experimentally in neutral condition, which is more realistic condition for geological storage. A modeling, based on a porous geochemical software (HYTEC) accounting for both chemistry and transport, has been successfully applied to describe alteration within simple silicate glass cracks. It will be extended to study SON 68 glass model cracks, and more complex fracture networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.