Abstract

AbstractHigh-precision (centimeter-level) real-time kinematic precise point positioning (PPP-RTK) becomes feasible when using precise corrections, as received from a regional Continuously Operating Reference Station network. These network corrections comprise (biased) satellite clocks, (biased) satellite phase biases, and ionospheric delays, where the latter ones are interpolated to the approximate location of the PPP-RTK receiver. Thus far, very fast PPP-RTK integer ambiguity resolution performance has been reported based on dual-frequency Global Positioning System (GPS) data. The availability of ionospheric corrections enables one to carry out PPP-RTK using a single-frequency receiver. Despite that single-frequency integer ambiguity resolution based on a single epoch of data cannot often be successful, fast integer ambiguity resolution is possible when accumulating a short time span of data, assuming that the ambiguities are time constant. In this paper, results of the performance of single-frequency PP...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.