Abstract

Interlayer excitons (IXs) in 2D semiconductors have long lifetimes and spin-valley coupled physics, with a long-standing goal of single exciton trapping for valleytronic applications. In this work, we use a nano-patterned graphene gate to create an electrostatic IX trap. We measure a unique power-dependent blue-shift of IX energy, where narrow linewidth emission exhibits discrete energy jumps. We attribute these jumps to quantized increases of the number occupancy of IXs within the trap and compare to a theoretical model to assign the lowest energy emission line to single IX recombination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.