Abstract
Variational quantum algorithms are among the most promising algorithms to achieve quantum advantages in the noisy intermediate-scale quantum (NISQ) era. One important challenge in implementing such algorithms is to construct an effective parameterized quantum circuit (also called an ansatz). In this work, we propose a single entanglement connection architecture (SECA) for a bipartite hardware efficient ansatz (HEA) by balancing its expressibility, entangling capability, and trainability. Numerical simulations with a one-dimensional Heisenberg model and quadratic unconstrained binary optimization (QUBO) issues were conducted. Our results indicate the superiority of SECA over the common full entanglement connection architecture in terms of computational performance. Furthermore, combining SECA with gate-cutting technology to construct distributed quantum computation (DQC) can efficiently expand the size of NISQ devices under low overhead. We also demonstrated the effectiveness and scalability of the DQC scheme. Our study is a useful indication for understanding the characteristics associated with an effective training circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.