Abstract
Quadratic Unconstrained Binary Optimization (QUBO) modeling has become a unifying framework for solving a wide variety of both unconstrained as well as constrained optimization problems. More recently, QUBO (or equivalent −1/+1 Ising Spin) models are a requirement for quantum annealing computers. Noisy Intermediate-Scale Quantum (NISQ) computing refers to classical computing preparing or compiling problem instances for compatibility with quantum hardware architectures. The process of converting a constrained problem to a QUBO compatible quantum annealing problem is an important part of the quantum compiler architecture and specifically when converting constrained models to unconstrained the choice of penalty magnitude is not trivial because using a large penalty to enforce constraints can overwhelm the solution landscape, while having too small a penalty allows infeasible optimal solutions. In this paper we present NISQ approaches to bound the magnitude of the penalty scalar M and demonstrate efficacy on a benchmark set of problems having a single equality constraint and present a QUBO partitioning approach validated by experimentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.