Abstract

The rate of electron tunneling through normal metal tunnel junctions is calculated for the case of ultrasmall junction capacitances. The so-called Coulomb blockade of electron tunneling at low temperatures is shown to be strongly affected by the external electrical circuit. Under the common experimental condition of a low impedance environment the Coulomb blockade is suppressed for single tunnel junctions. However, a Coulomb gap structure emerges for junctions embedded in a high impedance environment. For a double junction setup a Coulomb blockade of tunneling arises even for low impedance environments due to the charge quantization on the metallic island between the junctions. An approach using circuit analysis is presented which allows to reduce the calculation of tunneling rates in multijunction circuits to those of a single junction in series with an effective capacitance. The range of validity of the socalled local rule and global rule rates is clarified. It is found that the tunneling rate tends towards the global rule rate as the number of junctions is increased. Some specific results are given for a one-dimensional array of tunnel junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.