Abstract

Reducing the loose-layer-to-dense-layer ratio in PEO coatings on aluminum and its alloys is the key to improving their corrosion resistance and expanding their applications in the aerospace industry and other fields. In this paper, we describe the discharge evolution during the PEO process in exhaustive detail and report the appearance of a novel “chain-like” discharge for the first time. We investigated the microstructure and composition of PEO coatings using a scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer (EDS) and an X-ray diffractometer (XRD). The results reflected that the coating composition changed from amorphous Al2O3 to crystalline γ-Al2O3 and α-Al2O3 phases with the evolution of the plasma spark discharge state. We evaluated the electrochemical behavior of the coatings using a potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Under “chain-like” discharge, the icorr of the coating on Al was 8.564 × 10–9 A∙cm−2, which was five orders of magnitude lower than that of the sample without the PEO coating. Moreover, we evaluated the adhesion strength of the coatings at different stages using a pull-off test. The adhesion strength of the PEO coatings at stage V reached 70 MPa. Furthermore, the high content of α-Al2O3 increased the hardness of the coating to 2000 HV. Therefore, the “chain-like” discharge promoted the formation of a single dense layer with 2.8% porosity and that demonstrated excellent properties. We also propose a mechanism to explain the influence of the plasma spark discharge state on the microstructure and composition of the PEO coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call