Abstract

All-inorganic perovskite materials are promising in optoelectronics, but their morphology is a key parameter for achieving high device efficiency. We prepared CsPbBr3 perovskite microcrystals with different shapes grown directly on planar substrate by conventional drop casting. We observed the formation of CsPbBr3 microcubes on bare indium tin oxide (ITO)-coated glass. Interestingly, with the same technique, CsPbBr3 microrods were obtained on (3-Aminopropyl) triethoxysilane (APTES)-modified ITO-glass, which we ascribe to the modification of formation kinetics. The obtained microcrystals exhibit an orthorhombic structure. A green photoluminescence (PL) emission is revealed from the CsPbBr3 microrods. Contact angle measurements, Fourier-transform infrared and PL spectroscopies confirmed that APTES linked successfully to the ITO-glass substrate. We propose a qualitative mechanism to explain the anisotropic growth. The microrods exhibited improved PL and a slower PL lifetime compared to the microcubes, likely due to the diminished occurrence of defects. This work demonstrates the importance of the substrate surface to control the growth of perovskite single crystals and to boost the radiative recombination in view of high-performance optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.