Abstract

Using scanning tunneling microscopy, we studied the formation of silicene on an ultrathin Ag(111) film with a thickness of 6–12 monolayers, which was prepared on a Si(111) substrate. A low-energy electron diffraction pattern with an oval spot indicated that the ultrathin Ag(111) film is more disordered than the single-crystal Ag(111). After Si epitaxy growth, we still measured the classical 4 × 4, √13 × √13, and 2√3 × 2√3 silicene superstructures, which are the same as the silicene superstructure on single-crystal Ag(111). Growing silicene on a single-crystal Ag(111) bulk usually results in the formation of a defect boundary due to the inconsistent orientation of various superstructures. By comparing the angles and boundary conditions between various silicene superstructures on the ultrathin film and single-crystal Ag(111), we discovered that a consistent orientation of various superstructures without obvious boundary defects formed on the ultrathin Ag(111) film. The results indicated single crystalline silicene formation, which was attributed to the domain rotation and lateral shift of the disordered ultrathin Ag(111) film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.