Abstract
InxGa1−xN (InGaN) alloys are predominantly grown by heteroepitaxy on foreign substrates. Most often Al2O3, SiC and Si are used as substrates, however this complicates vertical conduction from the InGaN surface to the substrate backside. Therefore we investigate the heteroepitaxial growth of InGaN layers on Ge substrates. Single crystalline InGaN was obtained and domain formation was suppressed by using a thin GaN buffer layer. The InGaN shows compressive strain, which follows from the lattice mismatch with the GaN buffer layer. The In distribution is uniform throughout the InGaN layer, with no significant In segregation within the layer. Only at the surface, in a very thin layer of 20 nm, strong In segregation is observed with about 50% In. InGaN/GaN/Ge diodes show vertical current conduction of 1 A cm−2 at −2 V. InGaN grown on Ge is therefore promising for device applications with preferred vertical conduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.