Abstract
A perpendicular InGaN/GaN multiple-quantum- wells structure on ZnO substrate for blue light emitting diode (LED) was successfully fabricated by use of Metal-organic Chemical Vapor Deposition (MOCVD). During the growing process of GaN-based materials on ZnO substrates, the low-temperature-grown GaN buffer layer, inserted between ZnO substrate and undoped GaN layer, prevented the Zn and O from diffusing from ZnO substrate into the n-GaN layer. This thin GaN buffer layer, mainly as a insulating layer, was grown at relatively low temperature of 530 $^{\circ}{\hbox{C}}$ . By using our method, an integrated LED with ZnO substrate can be fabricated with a crack-free GaN film on (0001) ZnO substrate by MOCVD using this method. The epilayer crystalline structure has been measured by atomic force microscopy (AFM), and the optical properties of the LED were also characterized by photoluminescence and Current-Voltage characteristic curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.