Abstract

We identify vapor-etched grain boundary grooves on the solid-vapor interface as the main source of surface roughness in the deuterium-tritium (D–T) fuel layers, which are solidified and then cooled. Current inertial confinement fusion target designs impose stringent limits to the cross-sectional area and total volume of these grooves. Formation of these grain boundaries occurs over time scales of hours as the dislocation network anneals and is inevitable in a plastically deformed material. Therefore, either cooling on a much shorter time scale or a technique that requires no cooling after solidification should be used to minimize the roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.