Abstract

ABSTRACTGadolinium-doped ceria (GDC) thin films were grown by pulsed laser ablation on various oxide single crystal substrates including MgO, YSZ, LAO, NGO, and STO with different film-substrate lattice mismatch ratios. The film microstructures were characterized mainly by using electron microscopy. A clear influence of the filmsubstrate lattice mismatch on the film crystallinity has been observed. The GDC films usually exhibit columnar grain growth for a large range of film-substrate lattice mismatch ratios. A cube-on-cube growth of GDC film on MgO has been observed with a surprisingly high lattice mismatch ratio of 28%. The highest film crystallinity is obtained on the LAO substrates under a small compressive strain. This single-crystalline GDC film shows no columnar grain growth but presents a novel directionally-aligned precipitated Gd-rich nanoparticle system, which plays a specific role in relaxing various kinds of strain fields induced during the thin film growth to ensure the film crystallinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call