Abstract
Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing. Our examination unveiled that genes showing bias in spermatids exhibited higher dN/dS than those in GSCs_Spermatogonia. Genes biased towards young GSCs_Spermatogonia displayed higher dN/dS than those in old GSCs_Spermatogonia. Interestingly, genes biased towards young spermatids demonstrated lower dN/dS in contrast to those in old spermatids, revealing the complexity of evolutionary adaptations during ageing. Furthermore, mitochondria associated events, including oxidative phosphorylation, TCA cycle and pyruvate metabolism, were significantly enriched in germline subpopulations. Specifically, mitochondrial function was significantly impaired during the process of testicular ageing, concurrently emphasising the role of several key nuclear genome-encoded mitochondrial regulatory genes, such as Hsp60B, fzo, Tim17b1 and mRpL12. Our data offer insights into testicular homeostasis regulated by mitochondrial function during the ageing process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have