Abstract

Revealing the metabolic functions and the extracellular electron transfer (EET) process of psychrophilic electroactive biofilms (PEB) is important for understanding the functional adaptability of electroactive bacteria (EAB) to low temperatures. In this study, single cell sorting (SCS)-based metagenomics sequencing was used to characterize the composition and function of the PEB. Biofilm microbiome analysis showed that Geobacter, with a relative abundance of 62.64%, dominated the PEB enriched in the bioelectrochemical system (BES) at 4 °C. Both the metagenome (MAG) and single-cell metagenome (SCM) revealed that there were no obvious metabolic differences between the original biofilm and the sorted single cells. The presence of genes associated with type IV pilus, c-type cytochromes, and riboflavin indicated that the EET potential was maintained in the PEB at low temperatures. These results suggested that SCM provides an alternative approach to reconstruct the metabolic functions of uncultured and slow-growing EAB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call