Abstract

A new intermittent-contact atomic force microscopy (AFM) mode (frequency and force modulation AFM, FFM-AFM) has been recently proposed to characterize soft samples. This method uses excitation force frequency and amplitude modulation to eliminate bistability and reduce the tip-sample forces. This letter describes theoretical modeling of FFM-AFM applied to a single bacteriorhodopsin molecule on a substrate, showing that its cross section can be measured without damage, in contrast to conventional tapping-mode AFM. Speculations are made regarding nonideal conditions and the ability of FFM-AFM to perform quantitative nanoelasticity measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.