Abstract

Since its invention, amplitude-modulation tapping-mode atomic force microscopy (AM-AFM) has rapidly developed into a common high-resolution surface characterization tool. However, despite the technical advances, imaging bistability caused by the coexistence of the so-called attractive and repulsive imaging regimes, and potential sample damage in the repulsive regime (often critical in biological and other soft-sample applications) still remain as fundamental barriers which prevent users from consistently obtaining high-quality images. This report proposes a new intermittent-contact AFM imaging concept, frequency- and amplitude-modulation atomic force microscopy (FAM-AFM), which offers the potential to overcome both issues. This imaging method combines existing knowledge from non-contact frequency-modulation atomic force microscopy (FM-AFM) and AM-AFM in a new control scheme involving the use of variable excitation force amplitude and frequency to control the cantilever effective frequency and limit the magnitude of the tip–sample repulsive forces. As in FM-AFM, within the new scheme the cantilever is continuously excited at its (variable) effective frequency so it is not prone to bistability. Control of the repulsive forces is achieved through the adjustment of the excitation force amplitude, so that the effective frequency always remains below the free resonant frequency. Promising results from numerical simulations are presented for single-walled carbon nanotube (SWNT) and silicon tips interacting with a Si(100)-OH surface, and for SWNT tips interacting with the same surface while intermittently forming and breaking covalent bonds, and while experiencing attractive electrostatic interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call