Abstract
BackgroundLittle is known about the effect of cardiac resynchronization therapy (CRT) on endo- and epicardial ventricular activation. Noninvasive imaging of cardiac electrophysiology (NICE) is a novel imaging tool for visualization of both epi- and endocardial ventricular electrical activation.Methodology/Principal FindingsNICE was performed in ten patients with congestive heart failure (CHF) undergoing CRT and in ten patients without structural heart disease (control group). NICE is a fusion of data from high-resolution ECG mapping with a model of the patient's individual cardiothoracic anatomy created from magnetic resonance imaging. Beat-to-beat endocardial and epicardial ventricular activation sequences were computed during native rhythm as well as during ventricular pacing using a bidomain theory-based heart model to solve the related inverse problem. During right ventricular (RV) pacing control patients showed a deterioration of the ventricular activation sequence similar to the intrinsic activation pattern of CHF patients. Left ventricular propagation velocities were significantly decreased in CHF patients as compared to the control group (1.6±0.4 versus 2.1±0.5 m/sec; p<0.05). CHF patients showed right-to-left septal activation with the latest activation epicardially in the lateral wall of the left ventricle. Biventricular pacing resulted in a resynchronization of the ventricular activation sequence and in a marked decrease of total LV activation duration as compared to intrinsic conduction and RV pacing (129±16 versus 157±28 and 173±25 ms; both p<0.05).Conclusions/SignificanceEndocardial and epicardial ventricular activation can be visualized noninvasively by NICE. Identification of individual ventricular activation properties may help identify responders to CRT and to further improve response to CRT by facilitating a patient-specific lead placement and device programming.
Highlights
Cardiac resynchronization therapy (CRT) has evolved as an established treatment in patients with severe heart failure refractory to optimized neurohumoral therapy
Despite the fact that during cardiac resynchronization therapy (CRT) the right ventricular lead is placed endocardially and left ventricular pacing is performed using an epicardial lead placed within the coronary veins, little is known about endocardial and epicardial activation in these patients
Magnetic resonance imaging Prior to CRT-device implantation or electrophysiologic study, patient-specific anatomic data were obtained by magnetic resonance imaging (MRI) using a Magnetom Vision Plus 1.5 Tesla scanner (Siemens, Erlangen, Germany)
Summary
Cardiac resynchronization therapy (CRT) has evolved as an established treatment in patients with severe heart failure refractory to optimized neurohumoral therapy. Despite the fact that during CRT the right ventricular lead is placed endocardially and left ventricular pacing is performed using an epicardial lead placed within the coronary veins, little is known about endocardial and epicardial activation in these patients. Information on epicardial activation is limited to a small area of the left ventricle accessible via mapping in the coronary sinus. Most of these data were obtained by conventional fluoroscopy guided electrophysiological mapping as well as by electromagnetic three-dimensional non-fluoroscopic electroanatomic contact mapping [2,3]. Little is known about the effect of cardiac resynchronization therapy (CRT) on endo- and epicardial ventricular activation. Noninvasive imaging of cardiac electrophysiology (NICE) is a novel imaging tool for visualization of both epi- and endocardial ventricular electrical activation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.