Abstract

We demonstrate a compact (0.25 L) system for laser cooling and trapping atoms from a heated dispenser source. Our system uses a nanofabricated diffraction grating to generate a magnetooptical trap (MOT) using a single input laser beam. An aperture in the grating allows atoms from the dispenser to be loaded from behind the chip, increasing the interaction distance of atoms with the cooling light. To take full advantage of this increased distance, we extend the magnetic field gradient of the MOT to create a Zeeman slower. The MOT traps approximately 106 7Li atoms emitted from an effusive source with loading rates greater than 106 s-1. Our design is portable to a variety of atomic and molecular species and could be a principal component of miniaturized cold-atom-based technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.