Abstract

Charge sensing is a sensitive technique for probing quantum devices, of particular importance for spin-qubit readout. To achieve good readout sensitivities, the proximity of the charge sensor to the device to be measured is a necessity. However, this proximity also means that the operation of the device affects, in turn, the sensor tuning and ultimately the readout sensitivity. We present an approach for compensating for this crosstalk effect allowing for the gate voltages of the measured device to be swept in a 1-V × 1-V window while maintaining a sensor configuration chosen by a Bayesian optimizer. Our algorithm will hopefully be a major contribution to the suite of fully automated solutions required for the operation of large quantum device architectures. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.