Abstract
Exploring platinum group metal-free electrocatalysts with superior catalytic performance and favorable durability for oxygen reduction reaction is a remaining bottleneck in process of developing sustainable techniques in energy storage and conversion. Herein, a hierarchical porous single atomic Fe electrocatalyst (Fe/Z8-E-C) is rationally designed and synthesized via acid etching, calcination, adsorption of Fe precursor and recalcination processes. This unique electrocatalyst Fe/Z8-E-C shows excellent oxygen reduction performance with a half-wave potential of 0.89 V in 0.1 mol/L KOH, 30 mV superior to that of commercial Pt/C (0.86 V), which is also significantly higher than that of typical Fe-doped ZIF-8 derived carbon nanoparticles (Fe/Z8-C) with a half-wave potential of 0.84 V. Furthermore, Fe/Z8-E-C-based Zn-air battery exhibits greatly enhanced peak power density and specific capacity than those of original Fe/Z8-C, verifying the remarkable performance and practicability of this specially designed hierarchical structure due to its efficient utilization of the active sites and rapid mass transfer. This present work proposes a new method to rationally synthesize single atom electrocatalysts loaded on hierarchical porous frame materials for catalysis and energy conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.