Abstract

ABSTRACTThis study investigates the atom transfer radical emulsion polymerization of methyl methacrylate in a 2 L well‐mixed stirred batch reactor using activators generated by electron transfer as the initiation technique. The polymerization was carried out with ethyl‐2‐bromoisobutyrate as the initiator, copper bromide with 4,4′‐di‐5‐nonyl‐2,2′‐bipyridine as the catalyst system, Brij 98 as the surfactant, and ascorbic acid as the reducing agent. The reaction was carried out at constant temperature in the range of 50 to 70 °C under a blanket of nitrogen to minimize the presence of air in the system. Polymerizations were carried out according to single‐step and two‐step procedures. The coagulation was found to be a major problem, especially at high monomer conversion. However, adding more surfactant and lowering the reaction temperature weakened the effect of the coagulation but at the expense of the low monomer conversion. Measurement of molecular weight distribution and Đ using gel permeation show that the two‐step techniques produced polymers with living features of atom transfer radical emulsion polymerization much better than those in the single‐step procedure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45308.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.