Abstract

Development of high-performance p-type semiconductor based gas sensors exhibiting fast-response/recovery times with ultra-high response are of major importance for gas sensing applications. Recent reports demonstrated the excellent properties of p-type semiconducting oxide for various practical applications, especially for selective oxidation of volatile organic compounds (VOCs). In this work, sensors based on CuO nanowire (NW) networks have been successfully fabricated via a simple thermal oxidation process on pre-patterned Au/Cr pads. Our investigation demonstrates high impact of the process temperature on aspect ratio and density of copper oxide NWs. An optimal temperature for growth of thin and densely packed NWs was found to be at 425 degrees C. The fabricated sensors demonstrated ultra-high gas response by a factor of 313 to ethanol vapour (100 ppm) at an operating temperature of 250 degrees C. High stability and repeatability of these sensors indicate the efficiency of p-type oxide based gas sensors for selective detection of VOCs. A high-performance nanodevice was fabricated in a FIB-SEM system using a single CuO NW, demonstrating an ethanol response of 202 and rapid response and recovery of similar to 198 ms at room temperature. The involved gas sensing mechanism of CuO NW networks has been described. We consider that the presented results will be of a great interest for the development of higherperformance p-type semiconductor based sensors and bottomup nanotechnologies. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.