Abstract

Single and multiple wavelength laser systems are presented that employ self-injection locked InGaN/GaN green laser diodes in an external cavity configuration with a partially reflective mirror. A stable and simultaneous locking of up to four longitudinal Fabry–Perot modes of the system cavity is demonstrated with appreciable signal-to-noise-ratio of ∼13 dB and average mode linewidth of ∼150 pm. The multi-wavelength spectrum exhibited a flat-top emission with nearly equal power distribution among the modes and an analogous mode spacing of ∼0.5 nm. This first demonstration of multi-wavelength generation source is highly attractive in a multitude of cross-disciplinary field applications besides asserting the prospects of narrow wavelength spaced multiplexed visible light communication. Moreover, an extended two-stage self-injection locked near single wavelength visible laser system is also presented. An ultra-narrow linewidth of ∼34 pm is realized at 525.05 nm locked wavelength from this innovative system, with ∼20 dB side-mode-suppression-ratio; thus signifying a paradigm shift toward semiconductor lasers for near single lasing wavelength generation, which is presently dominated by other kinds of laser technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call