Abstract

Aquatic media are ultimate recipients of various contaminants including pesticides pervasively applied in agrosystems. Characterizing the ecotoxicity of pesticides and their mixtures to aquatic wildlife at field-realistic levels is thus crucial for environmental risk assessment. This study aims at assessing the effects of two current-use insecticides, imidacloprid and chlorpyrifos, on Gammarus fossarum using multi-level biomarkers. In microcosms, gammarids were exposed for 72 h to insecticides tested individually or in mixture at 0.01, 0.1 and 1 μg/L of each chemical. Multi-metric responses were assessed at the individual level (behavioural traits: locomotion, respiration and amplexus formation) and the cellular level (enzymes involved in growth, moulting, digestion and cell stress). The results showed insecticide-elicited behavioural and biochemical responses from the lowest concentration of 0.01 μg/L. Overall, single exposures stimulated behavioural traits and inhibited enzymatic activities, highlighting subtle impacts at different organizational levels but these were not dose related. For binary mixtures, antagonistic effects (i.e. less-than-additive) on biomarkers were mainly observed when compared with single exposures. Multi-variable analyses indicated the complementarity of behavioural and biochemical biomarkers in identifying sublethal biological alterations and dose-dependent multiple action sites of insecticides. Besides, the mortality observed only for the mixture at 1 μg/L demonstrated a high lethal potential of insecticides in a simple binary combination. To conclude, this study demonstrates disturbances in individual performances and cellular impairments occurring at environmentally realistic exposure levels in a non-target wild species. Since the sublethal effects, such as those identified with this multi-biomarker approach, could lead to long-term alterations in population dynamics of agricultural areas, they constitute promising early endpoints for risk assessment of insecticides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.